1,299 research outputs found

    The relative importance of competing pathways for the formation of high-molecular-weight peroxides in the ozonolysis of organic aerosol particles

    Get PDF
    High-molecular-weight (HMW) organic compounds are an important component of atmospheric particles, although their origins, possibly including in situ formation pathways, remain incompletely understood. This study investigates the formation of HMW organic peroxides through reactions involving stabilized Criegee intermediates (SCI's). The model system is methyl oleate (MO) mixed with dioctyl adipate (DOA) and myristic acid (MA) in submicron aerosol particles, and Criegee intermediates are formed by the ozonolysis of the double bond in methyl oleate. An aerosol flow tube coupled to a quadrupole aerosol mass spectrometer (AMS) is employed to determine the relative importance of different HMW organic peroxides following the ozonolysis of different mixing mole fractions of MO in DOA and MA. Possible peroxide products include secondary ozonides (SOZ's), α-acyloxyalkyl hydroperoxides and α-acyloxyalkyl alkyl peroxides (αAAHP-type compounds), diperoxides, and monoperoxide oligomers. Of these, the AMS data identify two SOZ's as major HMW products in the ozonolysis of pure methyl oleate as well as in an inert matrix of DOA to as low as 0.04 mole fraction MO. In comparison, in mixed particles of MO and MA, αAAHP-type compounds form in high yields for MO mole fractions of 0.5 or less, suggesting that SCI's efficiently attack the carboxylic acid group of myristic acid. The reactions of SCI's with carboxylic acid groups to form αAAHP-type compounds therefore compete with those of SCI's with aldehydes to form SOZ's, provided that both types of functionalities are present at significant concentrations. The results therefore suggest that SCI's in atmospheric particles contribute to the transformation of carboxylic acids and other protic groups into HMW organic peroxides

    Synaptobrevin cleavage by the tetanus toxin light chain is linked to the inhibition of exocytosis in chromaffin cells

    Get PDF
    Exocytosis of secretory granules by adrenal chromaffin cells is blocked by the tetanus toxin light chain in a zinc specific manner. Here we show that cellular synaptobrevin is almost completely degraded by the tetanus toxin light chain within 15 min. We used highly purified adrenal secretory granules to show that synaptobrevin, which can be cleaved by the tetanus toxin light chain, is localized in the vesicular membrane. Proteolysis of synaptobrevin in cells and in secretory granules is reversibly inhibited by the zinc chelating agent dipicolinic acid. Moreover, cleavage of synaptobrevin present in secretory granules by the tetanus toxin light chain is blocked by the zinc peptidase inhibitor captopril and by synaptobrevin derived peptides. Our data indicate that the tetanus toxin light chain acts as a zinc dependent protease that cleaves synaptobrevin of secretory granules, an essential component of the exocytosis machinery in adrenal chromaffin cells

    Functional characterization of the catalytic site of the tetanus toxin light chain using permeabilized adrenal chromaffin cells

    Get PDF
    The molecular events underlying the inhibition of exocytosis by tetanus toxin were investigated in permeabilized adrenal chromaffin cells. We found that replacement of amino acid residues within the putative zinc binding domain of the tetanus toxin light chain such as of histidine (position 233) by cysteine or valine, or of glutamate (position 234) by glutamine completely abolished the effect of the light chains on Ca2+ induced catecholamine release. Dipicolinic acid, a strong chelating agent for zinc, also prevented the effect of the tetanus toxin light chain. Zn2+ and, less potently Cu2+ and Ni2+, but not Cd2+ and Co2+, restored the activity of the neurotoxin. These data show that zinc and the putative zinc binding domain constitute the active site of the tetanus toxin light chain. Neither captopril, an inhibitor of synaptobrevin cleavage nor peptides spanning the site of synaptobrevins cleaved by the tetanus toxin in neurons, prevented the inhibition of Ca2+ induced catecholamine release by the tetanus toxin light chain. This suggests that synaptobrevins are not a major target of tetanus toxin in adrenal chromaffin cells

    Circadian factors BMAL1 and RORĪ± control HIF-1Ī± transcriptional activity in nucleus pulposus cells: implications in maintenance of intervertebral disc health.

    Get PDF
    BMAL1 and RORĪ± are major regulators of the circadian molecular oscillator. Since previous work in other cell types has shown cross talk between circadian rhythm genes and hypoxic signaling, we investigated the role of BMAL1 and RORĪ± in controlling HIF-1-dependent transcriptional responses in NP cells that exist in the physiologically hypoxic intervertebral disc. HIF-1-dependent HRE reporter activity was further promoted by co-transfection with either BMAL1 or RORĪ±. In addition, stable silencing of BMAL1 or inhibition of RORĪ± activity resulted in decreased HRE activation. Inhibition of RORĪ± also modulated HIF1Ī±-TAD activity. Interestingly, immunoprecipitation studies showed no evidence of BMAL1, CLOCK or RORĪ± binding to HIF-1Ī± in NP cells. Noteworthy, stable silencing of BMAL1 as well as inhibition of RORĪ± decreased expression of select HIF-1 target genes including VEGF, PFKFB3 and Eno1. To delineate if BMAL1 plays a role in maintenance of disc health, we studied the spinal phenotype of BMAL1-null mice. The lumbar discs of null mice evidenced decreased height, and several parameters associated with vertebral trabecular bone quality were also affected in nulls. In addition, null animals showed a higher ratio of cells to matrix in NP tissue and hyperplasia of the annulus fibrosus. Taken together, our results indicate that BMAL1 and RORĪ± form a regulatory loop in the NP and control HIF-1 activity without direct interaction. Importantly, activities of these circadian rhythm molecules may play a role in the adaptation of NP cells to their unique niche

    Identification of effector candidate genes of Rhizoctonia solani AG-1 IA expressed during infection in Brachypodium distachyon

    Get PDF
    Rhizoctonia solani is a necrotrophic phytopathogen belonging to basidiomycetes. It causes rice sheath blight which inflicts serious damage in rice production. The infection strategy of this pathogen remains unclear. We previously demonstrated that salicylic acid-induced immunity could block R. solani AG-1 IA infection in both rice and Brachypodium distachyon. R. solani may undergo biotrophic process using effector proteins to suppress host immunity before necrotrophic stage. To identify pathogen genes expressed at the early infection process, here we developed an inoculation method using B. distachyon which enables to sample an increased amount of semi-synchronous infection hyphae. Sixty-one R. solani secretory effector-like protein genes (RsSEPGs) were identified using in silico approach with the publicly available gene annotation of R. solani AG-1 IA genome and our RNA-sequencing results obtained from hyphae grown on agar medium. Expression of RsSEPGs was analyzed at 6, 10, 16, 24, and 32 h after inoculation by a quantitative reverse transcription-polymerase chain reaction and 52 genes could be detected at least on a single time point tested. Their expressions showed phase-specific patterns which were classified into 6 clusters. The 23 RsSEPGs in the cluster 1-3 and 29 RsSEPGs in the cluster 4-6 are expected to be involved in biotrophic and necrotrophic interactions, respectively
    • ā€¦
    corecore